Statin inhibition of Fc receptor-mediated phagocytosis by macrophages is modulated by cell activation and cholesterol.

نویسندگان

  • J D Loike
  • D Y Shabtai
  • R Neuhut
  • S Malitzky
  • E Lu
  • J Husemann
  • I J Goldberg
  • S C Silverstein
چکیده

OBJECTIVES An inflammatory response to altered lipoproteins that accumulate in the arterial wall is a major component of the pathogenesis of atherosclerosis. Statins reduce plasma levels of low-density lipoprotein (LDL) and are effective treatments for atherosclerosis. It is hypothesized that they also modulate inflammation. The aim of this study was to examine whether lovastatin inhibits macrophage inflammatory processes and clarify its mechanism of action. METHODS AND RESULTS We examined the effects of statins on phagocytosis of antibody-coated red blood cells by cultured human monocytes and mouse peritoneal macrophages. Lovastatin, simvastatin, and zaragozic acid, a squalene synthase inhibitor, blocked Fc receptor-mediated phagocytosis by cultured human monocytes and mouse peritoneal macrophages. The inhibitory effect of lovastatin on Fc receptor-mediated phagocytosis was prevented completely by addition of mevalonate, farnesyl pyrophosphate, LDL, or cholesterol to the culture medium. The inhibitory effect of zaragozic acid was reversed by addition of LDL, but not by the addition of geranylgeranyl pyrophosphate, to the medium. In addition, the effect of lovastatin on phagocytosis is a function of cell activation because treatment of cells with tumor necrosis factor-alpha or lipopolysaccharide prevented inhibition of phagocytosis by lovastatin. CONCLUSIONS The inhibition of Fc receptor-mediated phagocytosis of lovastatin is related to its effect on cholesterol biosynthesis rather than its effect on the formation of isoprenoids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Regulatory Role for Src Homology 2 Domain–Containing Inositol 5′-Phosphatase (Ship) in Phagocytosis Mediated by Fcγ Receptors and Complement Receptor 3 (αMβ2; Cd11b/Cd18)

The Src homology 2 domain-containing inositol 5'-phosphatase (SHIP) is recruited to immunoreceptor tyrosine-based inhibition motif (ITIM)-containing proteins, thereby suppressing phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathways. The role of SHIP in phagocytosis, a PI 3-kinase-dependent pathway, is unknown. Overexpression of SHIP in macrophages led to an inhibition of phagocytosis ...

متن کامل

Fc- and complement-receptor activation stimulates cell cycle progression of macrophage cells from G1 to S.

Phagocytosis of microorganisms by macrophages is an important host defense mechanism. While studying the phagocytosis of the human pathogenic fungus Cryptococcus neoformans, we noted that macrophage-like J774 cells with ingested fungal cells had frequent mitotic figures. By analyzing the relative proportion of phagocytic cells as a function of cell cycle phase, we observed an increase in S phas...

متن کامل

Cdc42 regulates Fc gamma receptor-mediated phagocytosis through the activation and phosphorylation of Wiskott-Aldrich syndrome protein (WASP) and neural-WASP.

Cdc42 is a key regulator of the actin cytoskeleton and activator of Wiskott-Aldrich syndrome protein (WASP). Although several studies have separately demonstrated the requirement for both Cdc42 and WASP in Fc(gamma) receptor (Fc(gamma)R)-mediated phagocytosis, their precise roles in the signal cascade leading to engulfment are still unclear. Reduction of endogenous Cdc42 expression by using RNA...

متن کامل

Cdc42 Regulates Fc Receptor-mediated Phagocytosis through the Activation and Phosphorylation of Wiskott-Aldrich Syndrome Protein (WASP) and Neural-WASP

Cdc42 is a key regulator of the actin cytoskeleton and activator of Wiskott-Aldrich syndrome protein (WASP). Although several studies have separately demonstrated the requirement for both Cdc42 and WASP in Fc receptor (Fc R)-mediated phagocytosis, their precise roles in the signal cascade leading to engulfment are still unclear. Reduction of endogenous Cdc42 expression by using RNA-mediated int...

متن کامل

The Src homology 2 domain–containing inositol 5-phosphatase negatively regulates Fc receptor–mediated phagocytosis through immunoreceptor tyrosine-based activation motif–bearing phagocytic receptors

Molecular mechanisms by which the Src homology 2 domain-containing inositol 5-phosphatase (SHIP) negatively regulates phagocytosis in macrophages are unclear. We addressed the issue using bone marrow–derived macrophages from Fc Ror SHIP-deficient mice. Phagocytic activities of macrophages from Fc RII(b) / and SHIP / mice were enhanced to a similar extent, relative to those from wild type. Howev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 24 11  شماره 

صفحات  -

تاریخ انتشار 2004